Фундаментальные взаимодействия
Фундаментальные взаимодействия – различные типы взаимодействия, не сводятся одна к другой, элементарных частиц и составленных из них тел. На сегодня достоверно известно существование четырех фундаментальных взаимодействий: гравитационного, электромагнитного, сильного и слабого взаимодействий. Ведутся поиски других типов взаимодействий, как в явлениях микромира, так и на космических масштабах, однако пока существование какого-либо другого типа взаимодействия не обнаружено.
В физике причиной изменения движения тел является сила (см. второй закон Ньютона). Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила, возникающая при столкновении тел, сила трения, сила сопротивления воздуха, сила взрыва и т.д. Однако как только была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку атомы взаимодействуют в основном через электростатическое взаимодействие электронных оболочек, то, как оказалось, все эти силы – лишь различные проявления электромагнитного взаимодействия. Единственное исключение – сила тяжести, причиной которой является гравитационное взаимодействие между двумя телами, обладающими массой.
Итак, к началу 20-го века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитной и гравитационной.
В 1930-е годы выяснилось, что атомы содержат внутри себя ядра, которые в свою очередь состоят из нуклонов (протонов и нейтронов). Ясно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и оно способно объяснить все явления в микромире, в частности, не было понятно, что заставляет распадаться свободный нейтрон. Так было постулировано существование слабого взаимодействия, и как оказалось, этого достаточно для описания всех взаимодействий, до сих пор наблюдались в микромире.
Первой из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году. Затем в 1915 Эйнштейн сформулировал общую теорию относительности, описывающую гравитационное поле. Появилась идея построения единой теории фундаментальных взаимодействий (которых на тот момент было известно только два), подобно тому, как Максвеллу удалось создать общее описание электрических и магнитных явлений. Такая единая теория объединила бы гравитацию и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.
В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории, однако ни одной полностью удовлетворительной модели выдвинуто не было. Это, в частности, связано с тем, что общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, тогда как электромагнитное поле является материей.
Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в нее слабого и сильного взаимодействий, а также квантование теории.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позже в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействия.
Экспериментальная проверка Стандартной Модели заключается в обнаружении предсказанных ею частиц и их свойств. Сейчас открыты все элементарные частицы Стандартной Модели, за исключением бозона Хиггса.
Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и Стандартной Моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, теории бран, а также перспективная М-теория.
В физике причиной изменения движения тел является сила (см. второй закон Ньютона). Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила, возникающая при столкновении тел, сила трения, сила сопротивления воздуха, сила взрыва и т.д. Однако как только была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку атомы взаимодействуют в основном через электростатическое взаимодействие электронных оболочек, то, как оказалось, все эти силы – лишь различные проявления электромагнитного взаимодействия. Единственное исключение – сила тяжести, причиной которой является гравитационное взаимодействие между двумя телами, обладающими массой.
Итак, к началу 20-го века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитной и гравитационной.
В 1930-е годы выяснилось, что атомы содержат внутри себя ядра, которые в свою очередь состоят из нуклонов (протонов и нейтронов). Ясно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и оно способно объяснить все явления в микромире, в частности, не было понятно, что заставляет распадаться свободный нейтрон. Так было постулировано существование слабого взаимодействия, и как оказалось, этого достаточно для описания всех взаимодействий, до сих пор наблюдались в микромире.
Первой из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году. Затем в 1915 Эйнштейн сформулировал общую теорию относительности, описывающую гравитационное поле. Появилась идея построения единой теории фундаментальных взаимодействий (которых на тот момент было известно только два), подобно тому, как Максвеллу удалось создать общее описание электрических и магнитных явлений. Такая единая теория объединила бы гравитацию и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.
В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории, однако ни одной полностью удовлетворительной модели выдвинуто не было. Это, в частности, связано с тем, что общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, тогда как электромагнитное поле является материей.
Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в нее слабого и сильного взаимодействий, а также квантование теории.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позже в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействия.
Экспериментальная проверка Стандартной Модели заключается в обнаружении предсказанных ею частиц и их свойств. Сейчас открыты все элементарные частицы Стандартной Модели, за исключением бозона Хиггса.
Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и Стандартной Моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, теории бран, а также перспективная М-теория.
Просмотров: 4709
Дата: 16-02-2011
Калибровочный бозон
В физике элементарных частиц калибровочные бозоны – это бозоны, которые переносчиками фундаментальных взаимодействий природы. Точнее, элементарные частицы, взаимодействия которых описываются
ПОДРОБНЕЕ
Электромагнитное взаимодействие
Электромагнитное взаимодействие – наиболее исследованная из четырех фундаментальных физических взаимодействий. Распространяется в форме электромагнитного поля, состоящего из векторных безмасових
ПОДРОБНЕЕ
Сила Кориолиса
Сила Кориолиса (по имени французского ученого Г. Г. Кориолиса) – одна из сил инерции, существующая в системе отсчета, вращающейся и проявляется при движении в направлении под углом к оси вращения.
ПОДРОБНЕЕ
Теории великого объединения
Теории великого объединения – общее название для попыток построения единой теории трех из четырех фундаментальных взаимодействий: слабого, электромагнитного и сильного. Теоретические построения,
ПОДРОБНЕЕ
Сильное взаимодействие
Сильное взаимодействие, сильная ядерное взаимодействие – одна из четырех фундаментальных сил природы, другие три: электромагнитная сила, гравитационная и слабое взаимодействие. Сильная ядерное
ПОДРОБНЕЕ
Теория всего
Теория всего (англ. Theory of everything, TOE) – объединенная физико-математическая теория, описывающая все известные фундаментальные взаимодействия. Первоначально данный термин использовался в
ПОДРОБНЕЕ