» » Электромагнитная волна

Электромагнитная волна

Электромагнитная волна это процесс распространения электромагнитного взаимодействия в пространстве.
Электромагнитные волны описываются общими для электромагнитных явлений уравнениями Максвелла. Даже в случае отсутствия в пространстве электрических зарядов и токов уравнения Максвелла имеют отличные от нуля решения. Эти решения описывают электромагнитные волны.
В случае отсутствия зарядов и токов уравнения Максвелла набирают следующего вида:

Электромагнитная волна,


Электромагнитная волна,


Электромагнитная волна,


Электромагнитная волна.

Применяя операцию rot к первым двум уравнений можно получить отдельные уравнения для определения напряженности электрического и магнитного полей

Электромагнитная волна


Электромагнитная волна

Эти уравнения имеют типичную форму волновых уравнений. Их развязками есть суперпозиция выражений следующего типа

Электромагнитная волна,


Электромагнитная волна,

где Электромагнитная волна – Определенный вектор, который называется волновым вектором, ? – число, которое называется циклической частотой, ? – фаза. Величины Электромагнитная волна и Электромагнитная волна есть амплитудами электрической и магнитной компоненты электромагнитной волны. Они взаимно перпендикулярны и равны по абсолютной величине. Физическая интерпретация каждой из введенных величин дается ниже.
В вакууме электромагнитная волна распространяется в скоростью, которая называется скоростью света. Скорость света является фундаментальной физической константой, которая обозначается латинской буквой c. Согласно основным постулатом теории относительности скорость света является максимально возможной скоростью передачи информации или движения тела. Эта скорость составляет 299 792 458 м / с.
Электромагнитная волна характеризуется частотой. Различают линейную частоту ? и циклическую частоту ? = 2??. В зависимости от частоты электромагнитные волны относятся к одному из спектральных диапазонов.
Другой характетистика электромагнитной волны волновой вектор Электромагнитная волна. Волновой вектор определяет направление распространения электромагнитной волны, а также ее длину. Абсолютное значение хвильoвого вектора называют волновым числом.
Длина электромагнитной волны ? = 2? / k, где k – волновое число.
Длина электромагнитной волны связана с частотой через закон дисперсии. В пустоте эта связь прост:

?? = c.

Часто данное соотношение записывают в виде

? = c k.

Электромагнитные волны с одинаковой частотой и волновым вектором могут различаться фазой.
В пустоте векторы напряженности электрического и магнитного полей Електомагнитна волны обязательно перпендикулярны направлению распространения волны. Такие волны называются поперечными волнами. Математически это описывается уравнениями Электромагнитная волна и Электромагнитная волна. Кроме того, напряженности елекричного и магнитного полей перпендикулярны друг к другу и всегда в любой точке пространства равные по абсолютной величине: E = H. Если выбрать систему координат таким образом, чтобы ось z совпадала с направлением распространения электромагнитной волны, существовать две различные возможности для направлений векторов напряженности электрического поля. Если эклектичное поле направлено вдоль оси x, то магнитное поле будет направлено вдоль оси y, и наоборот. Эти две разные возможности не исключают друг друга и соответствуют двум различным поляризация. Подробнее этот вопрос разбирается в статьи Поляризация волн.
Электромагнитная волна Спектральные диапазоны с выделенным видимым светом В зависимости от частоты или длины волны (эти величины связаны между собой), электромагнитные волны относят к разным диапазонам. Волны в различных диапазонах различным образом взаимодействуют с физическими телами.
Электромагнитные волны с наименьшей частотой (или наибольшей длиной волны) относятся к радиодиапазона. Радиодиапазон используется для передачи сигналов на расстояние с помощью радио, телевидения, мобильных телефонов. В радиодиапазоне работает радиолокация. Радиодиапазон разделяется на метровый, дицеметровий, сантиметровый, миллиметровый, в зависимости от длины Електомагнитна волны.
Электромагнитные волны с вероятностью принадлежат к инфракрасного диапазона. В инфракрасном диапазоне лежит тепловое излучение тела. Регистрация этого випромиювання лежит в основе работы приборов ночного видения. Инфракрасные волны применяются для изучения тепловых колебаний в телах и помогают установить атомную структуру твердых тел, газов и жидкостей.
Электромагнитное излучение с длиной волны от 400 нм до 800 нм принадлежат к диапазону видимого света. В зависимости от частоты и длины волны видимый свет различается по цветам.
Волны с длиной менее 400 нм называются ультрафиолетовыми. Человеческий глаз их не различает, хотя их свойства не отличаются от свойств волн видимого диапазона. Большая частота, а, следовательно, и энергия квантов такого света приводит к более разрушительного воздействия ультрафиолетовых волн на биологические объекты. Земная поверхность защищена от вредного воздействия ультрафиолетовых волн озоновым слоем. Для дополнительной защиты природа наделила людей темной кожей. Однако ультрафиолетовые лучи нужны человеку для производства витамина D. Именно поэтому люди в северных широтах, где интенсивность ультрафиолетовых волн меньше, потеряли темную окраску кожи.
Електомагнитна волны более высокой частоты относятся к рентгеновского диапазона. Они называют так потому, что их открыл Рентген, изучая излучения, которое образуется при торможении электронов. В зарубежной литературе такие волны принято называть X-лучами, уважая желание Рентгена, чтобы лучи не называли его именем. Рентгеновские волны слабо взаимодействуют с веществом, сильнее поглощаясь там, где плотность больше. Этот факт используется в медицине для рентгеновской флюорографии. Рентгеновские волны применяются также для элементного анализа и изучения структуры кристаллических тел.
Наивысшую частоту и наименьшую длину имеют ?-лучи. Такие лучи образуются в результате ядерных реакций и реакций между элементарными частицами. ?-лучи обладают большой разрушительное воздействие на биологические объекты. Однако они используются в физике для изучения различных характеристик атомного ядра.
Энергия электромагнитной волны определяется суммой энергий электрического и магнитного поля. Плотность энергии в определенной точке пространства задается выражением:

Электромагнитная волна.

Усредненная по времени плотность энергии равна.

Электромагнитная волна,

где E 0 = H 0 – амплитуда волны.
Важное значение имеет плотность потока энергии электромагнитной волны. Она в частности определяет световой поток в оптике. Плотность потока энергии электромагнитной волны задается вектором Умова-Пойнтинга.

Электромагнитная волна

Распространения электромагнитных волн в среде имеет ряд особенностей по сравнению с распространением в пустоте. Эти особенности связаны со свойствами среды и в целом зависят от частоты электромагнитной волны. Электрическая и магнитная составляющая волны вызывают поляризацию и намагничивания среды. Этот отклик среды неодинаковых в случае малой и большой частоты. При малой частоте электромагнитной волны, электроны и ионы вещества успевают отреагировать на изменение интенсивности электрического и магнитного полей. Отклик среды отслеживает временные колебания в волны. При большой частоте электроны и ионы вещества не успевают сместиться течение периода колебания полей волны, а потому поляризация и намагничивание среды намного меньше.
Электромагнитное поле малой частоты не проникает в металлы, где много свободных электронов, которые смещаются таким образом, полностью гасят электромагнитную волну. Электромагнитная волна начинает проникать в металл при частоте превышающей определенную частоту, которая называется плазменной частотой. При частотах меньших плазменную частоту электромагнитная волна может проникать в поверхностный слой металла. Это явление называется скин-эффектом.
В диэлектриках изменяется закон дисперсии электромагнитной волны. Если в пустоте электромагнитные волны распространяются с постоянной амплитудой, то в среде они затухают, вследствие поглощения. При этом энергия волны передается электронам или ионам среды. Всего закон дисперсии при отсутствии магнитных эффектов принимает вид

Электромагнитная волна

где волновое число k – всего комплексная величина, мнимая часть которой описывает уменьшение амплитуды елетромагнитнои волны, Электромагнитная волна – Зависящая от частоты комплексная диэлектрическая проницаемость среды.
В анизотропных средах направление векторов напряженности электрического и магнитного полей не обязательно перпендикулярен направлению распространения волны. Однако направление векторов электрической и магнитной индукции сохраняет это свойство.
В среде при определенных условиях может распространяться еще один тип электромагнитной волны – продольная электромагнитная волна, для которой направление вектора напряженности электрического поля совпадает с направлением распространения волны.
В начале двадцатого века для того, чтобы объяснить спектр излучения абсолютно черного тела, Макс Планк предположил, что электромагнитные волны излучаются квантами с энергией пропорциональной частоте. Через несколько лет Альберт Эйнштейн, объясняя явление фотоэффекта расширил эту идею, предположив, что электромагнитные волны поглощаются такими же квантами. Таким образом, стало ясно, что электромагнитные волны характеризуются некоторыми свойствами, которые раньше приписывались материальным частицам, корпускул.
Эта идея получила название корпускулярно-волнового дуализма.

Просмотров: 7729
Дата: 17-02-2011

Квантовая электродинамика

Квантовая электродинамика
Квантовая электродинамика – область физики, изучающая взаимодействие между заряженными частицами, учитывая квантовые свойства частиц и полей. Квантовая механика опирается на квантовые уравнения
ПОДРОБНЕЕ

Классическая электродинамика

Классическая электродинамика
Классическая электродинамика (рус. электродинамики, англ. Electrodynamics, нем. Elektrodynamik f) – раздел физики, который занимается изучением взаимодействия наэлектризованных, намагниченных тел и
ПОДРОБНЕЕ

Корпускулярно-волновой дуализм

Корпускулярно-волновой дуализм
Корпускулярно-волновой дуализм – предложенная Луи де Бройлем гипотеза о том, что любая элементарная частица имеет волновые свойства, а любая волна имеет свойства, характерные для частицы. Гипотеза де
ПОДРОБНЕЕ

Волна

Волна
Волна – изменение состояния среды (возмущения), которое распространяется в пространстве и переносит с собой энергию. Средой, в которой распространяются волны может быть как вещество, так и вакуум,
ПОДРОБНЕЕ

Уравнения Максвелла

Уравнения Максвелла
Уравнения Максвелла – это основные уравнения классической электродинамики, описывающие электрическое и магнитное поле, созданное зарядами и токами. В дифференциальной форме уравнения Максвелла
ПОДРОБНЕЕ

Электромагнитное поле

Электромагнитное поле
Электромагнитное поле – это поле, описывающее электромагнитное взаимодействие между физическими телами. Раздел физики, изучающий электромагнитное поле, называется электродинамикой. Постоянные
ПОДРОБНЕЕ
О сайте
Наш сайт создан для тех, кто хочет получать знания.
В нашем мире есть еще столько интересных вещей, мест, мыслей, светлых идей, о которых нужно обязательно узнать!
Авторизация