» » Метрический тензор

Метрический тензор

Величины, которые касаются геометрии – это расстояния, длины кривых, площади и объемы (в том числе m-мерные объемы) геометрических фигур, а также углы между векторами, прямыми и т.д. Рассмотрим сначала прямоугольную декартову систему координат Метрический тензор в n-мерном пространстве. Как известно из аналитической геометрии, квадрат расстояния между двумя точками A и B дается следующей формулой, которая является обобщением теоремы Пифагора:

Метрический тензор

где индексами внизу обозначено, к какой точки данная координата относится.
Мы не можем непосредственно распространить формулу (1) на измерение длин кривых (поскольку длина зависит не только от положения двух крайних точек, но и от положения всех промежуточных точек), а также для измерения внутри кривых многообразия (поскольку в них даже не существует декартовой системы координат). Но в обоих этих случаях аналогичную формулу мы можем написать для двух бесконечно близких точек. Обозначим их являются P с координатами [thumb=left]https://mir-prekrasen.net/uploads/posts/2011-02/1298134010_14ee48c746b63b12863830ae5a0b295ae.png[/img] и точка P 'с координатами [img=left]https://mir-prekrasen.net/uploads/posts/2011-02/1298134017_3a84d0b39c8916d8f1f02acc503861134.png[/thumb]. Расстояние между этими точками обозначим d s, тогда формула (1) в новых обозначениях (дифференциалах) перепишется так:

[img=left]https://mir-prekrasen.net/uploads/posts/2011-02/1298133995_42adf6cedc187b5138d1e437aa8c6c1a7.png[/img]

Если от прямоугольной декартовой системы координат перейти в любую другую, в общем случае криволинейную, то вид формулы (2) как суммы квадратов не сохранится. Обозначим координаты новой системы Метрический тензор. Тогда дифференциалы старых и новых координат связаны формулами:

Метрический тензор

и для квадрат а расстояния (2) мы получаем квадратичную форму относительно дифференциалов новых координат:

Sum_ {i = 1} ^ n sum_ {j = 1} ^ n sum_ {k = 1} ^ n left ({ partial x ^ i over partial u ^ j} du ^ j right) left ({ partial x ^ i over partial u ^ k} du ^ k right) = sum_ {j, k = 1} ^ n g_ {jk} du ^ jdu ^ k "src =" http: / / upload.wikimedia.org/math/7/6/9/7694a278a7595f510032fb40e86df89e.png "/>

где коэффициенты g j k равны сумме:

Метрический тензор

В формулах (3), (4) все суммы берутся по индексам, повторяющиеся в пределах от первого (1) до последнего индекса (n). Поэтому для упрощения вида формул целесообразно в этих формулах не писать знак суммы (правило Эйнштейна). При использовании правила Эйнштейна формула (4) запишется так:

Метрический тензор

Пусть имеем N-мерный евклидово пространство с координатами Метрический тензор. Радиус-вектор точки обозначим через Метрический тензор :

Метрический тензор

Рассмотрим в этом пространстве n-мерный многообразие, заданное параметрически через Метрический тензор. Точки многообразиях определяются через некоторые функции радиус-вектора от этих параметров:

Метрический тензор

Тогда две близкие точки многообразиях образуют вектор смещения:

Метрический тензор

а квадрат расстояния равен скалярному квадрату вектора смещения:

Метрический тензор

То есть мы опять получили формулу (6), но коэффициенты даются другими чем (5) по виду, но аналогичными формулам:

Метрический тензор

Действительно, расписав скалярное произведение в (11) как сумму попарных произведений компонент векторов Метрический тензор и Метрический тензор. Равенство достигается, когда многообразие является евклидовым пространством, которое помещено сам в себя.
Пусть на многообразии задано еще одну (новую) систему координат Метрический тензор, Координаты которой мы обозначим шляпками, чтобы отличить от старой системы координат. Ясно, что существует взаимно-однозначное соответствие между старой и новой системой координат через посредство точек многообразия. А именно, набор каких n чисел Метрический тензор задает некоторую точку P на многообразия, а эта точка P имеет координаты Метрический тензор в новой системе координат. Это соответствие мы можем записать через набор функций:

Метрический тензор

выражающие новые координаты через старые. Поскольку это соответствие взаимно-однозначное, то и наоборот, новые координаты можно выразить через старые:

Метрический тензор

Мы будем считать эти функции дифференцируемы. Тогда дифференциалы этих координат (для двух бесконечно близких точек) связаны формулами:

Метрический тензор

Подставляя (14) в (6), находим:

Метрический тензор

и коэффициенты Метрический тензор метрики в новой системе координат равны

Метрический тензор

Из этой формулы мы видим, что коэффициенты метрики образуют дважды ковариантный тензор.
Имея метрический тензор g i j, мы можем вычислять все геометрические характеристики фигур, находящиеся внутри многообразия. Пусть например задан кривую линию в параметрической форме u i = u i (t). Тогда мы можем вычислить длину дуги этой кривой (при изменении параметра t в пределах отрезка [a, b]), тоскуя расстоянии всех соседних точек и переходя к интегралу:

Метрический тензор

Далее, мы можем вычислять скалярные произведения касающихся многообразия векторов. Пусть заданы два касательные векторы Метрический тензор и Метрический тензор. Разложим их по базису системы координат:

Метрический тензор

тогда их скалярное произведение равно:

Метрический тензор

Имея скалярное произведение, мы можем вычислять длины векторов:

Метрический тензор

и углы между двумя векторами:

Метрический тензор

Эту же формулу можно использовать для вычисления угла между двумя кривыми в точке пересечения. Для этого в (21) надо подставить касательные векторы к этим кривых.
Далее, поиск кратчайшего кривой между двумя точками многообразия приводит к уравнению геодезической линии, которое с очевидностью зависит только от метрического тензора g i j и его производных по координатам. Геодезическая линия является аналогом прямой в евклидовом пространстве. С отрезков геодезических мы можем конструировать треугольник и другие закнени и незакрытые ломаные. Умея искать углы между кривыми по формуле (21), мы можем определить углы геодезического треугольника, и как они зависят от длин сторон (формула (17) для геодезических).
Далее, мы можем вычислить площадь параллелограмма, построенного на векторам Метрический тензор и Метрический тензор :

Метрический тензор

где введено обозначение метрической матрешки (смотрите также статью Единичный антисимметричный тензор):

Метрический тензор

Имея какую гладкую двумерную поверхность F внутри многообразия, мы можем разбить ее на маленькие параллелограммы, и воспользовавшись формулой (22) найти площадь каждого из этих параллелограммов. Добавляя все эти площади, и переходя к интегрированию, мы очевидно можем найти площадь всей поверхности F.
Аналогично мы можем m-мерный объем любого m-мерного подмноговидов ( Метрический тензор ), В том числе объем самого многообразия:

Метрический тензор

где буквой g обозначено определитель метрике метрического тензора:

Метрический тензор

Аналогично геодезической линии, мы можем рассматривать минимальные многообразия высших размерностей. Например, мы можем "натянуть" минимальную двумерную поверхность на треугольник, составленный из отрезков геодезических – и таким образом вычислить площадь этого треугольника.
Далее, измеряя отрезки геодезических, мы можем говорить о расстоянии между двумя удаленными точками многообразия. Пользуясь понятием расстояния, мы можем рассматривать такие геометрические объекты как шар и гиперсфера внутри многообразиях с центром в какой точке этого многообразия.
Поскольку метрического тензора оказывается достаточно, чтобы вычислять различные свойства фигур внутри многообразия, мы можем абстрагироваться от внешнего евклидова пространства (размерности Метрический тензор с одним верхним и одним нижним индексами. В старой системе координат Метрический тензор координаты этого тензора образуют единичную матрицу:

Метрический тензор

Вычислим координаты этого единичного тензора в новой системе координат Метрический тензор. Имеем тензорными правилами:

Метрический тензор

поскольку матрицы перехода между этими системами координат

Метрический тензор

являются взаимно обратными матрицами.
Формула (27) показывает, что компоненты тензора Метрический тензор образуют единичную матрицу не только в старой, а вообще в любой системе координат. Спрашивается, какие еще тензоры мы можем образовать, имея метрический тензор g i j и единичный тензор Метрический тензор ? Добавлять эти тензоры покомпонентно мы не можем, поскольку они по-разному изменяются при замене координат. Обратимся к алгебре матриц. Имея матрицу

Метрический тензор

Можно проверить, что из всех таких функций только прямая пропорциональность и обратная пропорциональность образуют тензор – т.е. правильно изменяются при замене координат:

Метрический тензор

Ясно, что обратная матрица G - 1 превращается по законам дважды контравариантный тензор. Этот тензор принято обозначать той же буквой g i j, что и метрический тензор g i j, но с двумя верхними индексами и называть обратным метрическим тензором. Из определения имеем:

Метрический тензор

Метрический тензор вместе со своим обратным позволяет установить эквивалентность между ковариантный и контравариантный тензор. Это осуществляется с помощью формулы опускания индексов из свертку с метрическим тензором, наприкдад:

Метрический тензор

и поднятия индексов из свертку с обратным метрическим тензором, например:

Метрический тензор

Поскольку тензоры g i j и g i j взаимно обратные (формула 31), то после последовательного применения двух операций: поднять индекс затем опустить, или наоборот, опустить индекс затем поднять – мы вернемся к оригинальному тензора, который был в начале, например :

Метрический тензор

Подъема и опускания индексов с помощью метрического тензора называется жонглированием индексами. В результате подъема одного индекса в самом метрического тензора g i j мы получим единичный тензор Метрический тензор :

Метрический тензор

Подняв еще один индекс метрического тензора, мы придем к обратной метрического тензора:

Метрический тензор

Из формул (35) и (36) мы видим, что с точностью до жонглирования индексов тензоры g i j, Метрический тензор и g i j представляют один и тот же тензор. Так что мы совершили разумно, обозначив обращен метрический тензор g i j той же буквой g, что и метрический тензор g i j. Сравним формулы поднятия двух индексов для произвольного тензора a i j и для метрического тензора g i j:

Метрический тензор

Коваринтна производная Метрический тензор тензора Метрический тензор дается формулой:

Метрический тензор

Вычислим сначала ковариантная производную единичного тензора:

Метрический тензор

Как видим, эта производная равна нулю всегда, не только для символов Кристоффеля, но и для более общего случая коэффициентов аффинной связности. Перейдем теперь к метрического тензора. В охватывающего евклидовом пространстве вторая производная Метрический тензор радиус-вектора Метрический тензор розгладаеться на касательную к многообразиях составляющую, и на ортогональную Метрический тензор :

Mathbf {b} _ {ij} "src =" http://upload.wikimedia.org/math/3/3/1/331...5099a920eb8.png "/>

домножуючы обе части этого уравнения скалярно на вектор Метрический тензор, Получаем:

Метрический тензор

Отсюда имеем для частных производных метрического тензора формулу:

Метрический тензор

Пользуясь уравнением (42), находим ковариантная производную метрического тензора:

Метрический тензор

Итак ковариантные производные метрического тензора g i j и единичного Метрический тензор равны нулю. Это также означает, что эти тензоры перестановочное со значком ковариантной производной Метрический тензор :

Метрический тензор

Проверим для полноты картины, ковариантная производная обратной метрического тензора g i j также равна нулю:

Метрический тензор

Метрический тензор g i j можно рассматривать как набор Метрический тензор функций от координат Метрический тензор. Поскольку мы можем брать различные системы координат для одного и того же многообразия, то мы будем иметь и разный набор функций. Это эквивалентно тому, как мы можем сфотографировать один и тот же предмет под разными ракурсами. В общем случае задача распознать на двух фотографиях один и тот же объект оказывается слишком сложной для компьютера, универсальный алгоритм распознавания еще неизвестен. То же с метрическим тензором – имея два набора Метрический тензор функций, мы не можем сразу сказать, представляют ли они один и тот же многообразие в разных системах координат. Но в двух случаях этот анализ оказывается несложным.
Пространство постоянной кривизны
Первый простой случай – это пространство постоянной кривизны, в котором тензор Римана пропорционален метрической матрешке четвертого ранга с постоянным коэффициентом пропорциональности K:

Метрический тензор

Мы можем проверить для двух наборов функций Метрический тензор, И Метрический тензор удовлетворяют ли они уравнения (46) с одним и тем же коэффициентом K. Продолжая аналогию с фотографиями, это эквивалентно, что мы имеем две равномерно засвеченные фотографии, все пиксели битмапами равны одному и тому же числу.
Малая деформация системы координат
Второй простой случай – когда система координат смещается на малый вектор v i:

Метрический тензор

Малость смещение означает, что мы можем разложить функции метрического тензора в ряд Тейлора и ограничиться линейным членом:

Метрический тензор

Найдем вариацию компонент метрического тензора (разница функций при одних и тех же аргументах):

Метрический тензор

Подставим (49) в (48):

Метрический тензор

Далее, запишем формулу замены координат:

Метрический тензор

Матрицы перехода для функций (47) легко вычисляются:

Метрический тензор

Раскроем скобки, сохраняя лишь постоянные и линейные по v i слагаемые. После сокращений получаем:

Метрический тензор

откуда

Метрический тензор

Эта формула применяется для вывода линеаризованные уравнения Эйнштейна в теории гравитации. Аналогом этого случая в машинной обработке изображений является алгоритм линейного слежения за подвижными объектами по двум смежным кадрах видеокамеры. Данная аналогия лишь концептуальная, формулы получаются различные.
Метрический тензор допускает обобщение, когда мы не обмежуемся действительными положительно-определенными матрицами – Псевдометрика
В псевдометрици большинство формул внутренней геометрии остаются неизменными – и мы можем рассматривать понятие геодезической линии, ковариатного дифференцировки, тензора Римана. Но неопределенность знаков вносит коррективы в интерпретацию этих понятий. В частности геодезическая линия не является кратчайшей, и понятие расстояния становится сложнее чем в евклидовом случае (корень из отрицательного числа). Изучение псевдометрикы побуждается свойствами физического пространства, в котором мы живем – смотрите статью Метрика пространства-времени

Просмотров: 4593
Дата: 19-02-2011

Дифференциальная геометрия

Дифференциальная геометрия
Дифференциальная геометрия – это математическая дисциплина применяющая методы математического анализа для изучения гладких кривых, поверхностей и, в общем виде, их n-мерных аналогов, которые
ПОДРОБНЕЕ

Аналитическая геометрия

Аналитическая геометрия
Аналитическая геометрия, раздел геометрии, в котором свойства геометрических образов (точек, линий, поверхностей) устанавливаются средствами алгебры при помощи метода координат, то есть путем
ПОДРОБНЕЕ

Многообразие

Многообразие
Многообразие – это объект, который локально имеет характер метрического пространства размерности n. Он имеет целочисленных размерность, которая указывает сколькими параметрами (координатами) можно
ПОДРОБНЕЕ

Системы координат

Системы координат
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные
ПОДРОБНЕЕ

Прямая

Прямая
Прямая – одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами
ПОДРОБНЕЕ

Географические координаты

Географические координаты
Географическая сфера Географические координаты – величины, определяющие положение определенной точки на местности (на плане или на карте) относительно принятой системы координат. Система координат
ПОДРОБНЕЕ
О сайте
Наш сайт создан для тех, кто хочет получать знания.
В нашем мире есть еще столько интересных вещей, мест, мыслей, светлых идей, о которых нужно обязательно узнать!
Авторизация