» » Топология

Топология

Лента Мебиуса, интересна тем, что имеет только одну поверхность; такие формы являются объектом изучения топологии. Топология (греч. – место, logos – наука) – раздел математики, который приближен к геометрии. В то время как алгебра начинается с рассматривания операций, геометрия – фигур, а математический анализ – функций; фундаментальное понятие топологии – непрерывность. Непрерывное отображение деформирует пространство, не разрывая его, при этом отдельные точки или части пространства могут склеиться (соединиться), но близкие точки остаются близкими. В отличие от геометрии, где рассматриваются преимущественно метрические характеристики, такие как длина, угол и площадь, в топологии эти характеристики считаются несущественными на фоне изучаются такие фундаментальные свойства фигуры, как связность (количество кусков, дыр и т.д.) или возможность непрерывно здеформуваты ее к сферы и обратно (это возможно для поверхности куба, но невозможно для поверхности тора).
Аксиоматика топологии построена на принципах теории множеств, но ведущую роль в исследованиях по современной топологии играют прежде алгебраические и геометрические методы. Объектами исследования топологии является топологические пространства, совместное обобщение таких структур как граф, поверхность в трехмерном пространстве и множество Кантора и отображения между ними. При этом исследуются свойства топологических пространств как в малом (локальные), так и в целом (глобальные). Среди разнообразных направлений топологии отметим приближенную к теории множеств общую топологию, которая изучает такие общие свойства абстрактных топологических пространств как компактность или связность, и алгебраическую топологию, которая пытается описать топологические пространства с помощью их алгебраических инвариантов, например чисел Бетти и фундаментальной группы. Геометрическая топология изучает топологические пространства геометрического происхождения, узлы в трехмерном евклидовом пространстве и трехмерные многообразия. К геометрической топологии принадлежит одна из крупнейших и известнейших математических проблем, гипотеза Пуанкаре, которую наконец (2003 г.) доказал российский математик Григорий Перельман.
Наряду с алгеброй и геометрией, топологические методы широко используются в функциональном анализе, теории динамических систем и современной математической физике.
Срок топология используется для обозначения как математической дисциплины, так и для определенной математической структуры, смотри топологическое пространство.
Семь мостов Кенигсберга – первая задача топологии, которая была рассмотрена Л. Эйлером. Начальные исследования по топологии принадлежат Леонарду Эйлеру. Считается, что статья Эйлера «Solutio problematis ad geometriam situs pertinentis» («Решение вопроса, связанного с геометрией положения»), напечатанная в 1736 г., содержала первые результаты по топологии. Новая точка зрения, предложенная Эйлером, заключалась в том, чтобы во время изучения определенных вопросов по геометрии отказаться от рассмотрения метрических свойств геометрических фигур, таких как длина и площадь. Так, в 1750 г. в письме Гольдбаха Эйлер сообщил о своей славной формулу

В – Р + Г = 2,

которая связывает число вершин В, ребер Р и граней Г выпуклого многогранника.
В 1895 г. Анри Пуанкаре опубликовал цикл статей Analysis Situs, в которых заложил основы алгебраической топологии. Совершенствуя предварительные исследования связности топологических пространств, Пуанкаре ввел понятие гомотопии и гомологии и предоставил определение фундаментальной группы.
В определенном смысле, работы Пуанкаре подвели итог исследованиям Эйлера, Люилье, Гаусса, Римана, листингу, Мебиуса, Жордана, Клейна, Бетти и др. с комбинаторной и геометрической топологии. Важной особенностью почти всех этих работ, включая Пуанкаре, был их интуитивный характер. Вместе с существенным количеством примеров топологических объектов и результатов для их свойств, новой области математики хватало ли не самого главного: строгого определения объектов ее исследования, то есть, современным языком, топологических пространств.
Осознание важности топологической парадигмы в математическом анализе, связанной со строгим обоснованием границ, непрерывности и компактности в работах Больцано, Коши, Вейерштрасса, Кантора и др. привело к аксиоматического определения основных понятий топологии и развития общей топологии, а вместе с ней и топологии векторных пространств, функционального анализа. Таким образом, проблемы анализа образуют вторых, во многом, независимое от вопросов геометрии, источник для развития топологии. Следует отметить что до сих пор пути развития общего и алгебраической топологии почти не пересекаются.
Общепризнанная ныне аксиоматика топологии основывается на теории множеств, которая была образована Георгом Кантором во второй половине 19-го века. В 1872 г. Кантор предоставил определение открытых и замкнутых множеств действительных чисел. Интересно отметить, что Кантор поступил в некоторых идей теории множеств, например, множества Кантора, в пределах своих исследований по рядов Фурье. Систематизируя работы Георга Кантора, Вито Вольтерры, Чезаре Арцела, Жака Адамара и др., в 1906 году Морис Фреше обозначил понятие метрического пространства. Чуть позже было осознано, что метрическое пространство – это частный случай более общего понятия, топологического пространства. В 1914 г. Феликс Хаусдорф использовал термин «топологическое пространство» в близком к современному смысле (рассмотренные им топологические пространства сейчас называют хаусдорфовой).
Происхождение названия
Собственно термин «топология» («topologie» на немецком языке) впервые появился лишь в 1847 г. в статье Листинг Vorstudien zur Topologie. Однако к тому времени Листинг уже более 10 лет использовал этот термин в своих переписки. «Topology», английская форма срока, была предложена в 1883 в журнале Nature для того чтобы различить качественную геометрию от геометрии обычной, в которой превалируют количественные соотношения. Слово topologist – т.е. тополог, в смысле «специалист по топологии" было впервые использовано в 1905 в журнале Spectator. Благодаря влиянию упомянутых выше статей Пуанкаре, топология долгое время была известна еще под названием Analysis Situs (лат. анализ места).
Топологические пространства естественно появляются во многих разделах математики. Это делает топологию чрезвычайно универсальным инструментом для математиков Общая топология определяет и изучает такие свойства пространств и отображений между ними как связность, компактность и непрерывность. Алгебраическая топология использует объекты абстрактной алгебры, а особенно теории категорий для изучение топологических пространств и отображений между ними.
Чтобы понять, для чего нужна топология, можно привести такой пример: в некоторых геометрических задачах не так важно знать точную форму объектов, как знать как они расположены. Если рассмотреть квадрат и круг (контуры), казалось бы такие разные фигуры, можно заметить несколько общего: оба объекта являются одномерными и оба разделяют пространство на две части – внутренность и внешность.
Темой одной из самых статей (автор – Леонард Эйлер) по топологии была демонстрация того, что невозможно найти путь в Кенигсберге (ныне Калининград), который бы пролег через каждый из семи городских мостов ровно по одному разу. Этот результат не зависел ни от длины мостов, ни от расстояния между ними. Влияли только свойства связности: какие мосты связывают которые острова или берега. Эта задача Семи мостов Кенигсберга показательна при изучении математики, также она стала основополагающей в разделе математики, называется теория графов.
Похожей является теорема мохнатой шара с алгебраической топологии, в которой говорится следующее: «невозможно причесать волосы на шаре в одну сторону». Этот факт является достаточно наглядным и многие сразу находят понимание, однако ее формальную запись для многих не является очевидным: не существует ненулевого непрерывного поля касательных векторов на сфере. Как и с кенигсбергских мостами, результат не зависит от точной формы сферы; утверждение выполняется и для грушевидных форм, даже для более общих – каплевидных форм (с некоторыми условиями на гладкость поверхности), при общей условии отсутствия дыр.
Так что для того, чтобы решать подобные задачи, которые в действительности не нуждаются сведений о точной форму объектов, нужно четко знать, от каких же свойств зависит решение таких задач. Сразу возникает потребность в определении топологической эквивалентности. Невозможность пройти каждым из мостов по одному разу относится также к любому расположения мостов, эквивалентного Кенигсбергского; теорема мохнатой шара может быть применена к любому объекту топологически эквивалентного шара.
Непрерывная деформация кофейной чашки в баранку (тор). Такое преобразование называют гомотопии. Фазы преобразования чашки в баранку Интуитивно, два топологических пространства эквивалентны (гомеоморфными), если один может быть преобразован в другой без отрезков или склеек. Традиционным есть такая шутка: тополог не может отличить чашку кофе, из которой она пьет, от бублика, которую он ест, так как достаточно гибкий баранку можно легко превратить в форму чашки, создав углубления и увеличивая его, одновременно уменьшая отверстие до размеров ручки.
В качестве простого исходной задачи можно классифицировать буквы латинского алфавита в терминах топологической эквивалентности. (Будем считать, что толщина линий, из которых составлен буквы ненулевая) В большинстве шрифтов что сейчас применяются существует класс букв ровно с одной дыркой {a, b, d, e, o, p, q}, класс букв без дырок: {c, f, h, k, l, m, n, r, s, t, u, v, w, x, y, z}, и класс букв, состоящих из двух кусков: {i, j}. Буква «g» может принадлежать либо классу букв с одной дыркой, или (в некоторых шрифтах) это может быть буква с двумя дырками (если ее хвостик был заперт). Для более сложного примера можно рассмотреть случай нулевой толщины линий; можно рассмотреть различные топологии в зависимости от того, какой шрифт выбрать. Топология букв имеет свое практическое применение в трафаретной типографии: например, шрифт Braggadocio может быть вырезан из плоскости, не распавшись после этого.
Топология – одна из наиболее центрально-расположенных математических дисциплин, в смысле численности связей и степени взаимного влияния с другими разделами математики. Приведем следующие примеры.
Математическая сообщество высоко отметила вклад топологий к развитию математики. За период с 1936 по 2006 г., одна из высших наград в математике, Медаль Филдса, была присуждена 48 математикам, 9 из них за исследования именно в топологии. В работах еще нескольких из лауреатов топологические методы играли важную роль.
Трем из них премия была присуждена за решение гипотезы Пуанкаре: Григорию Перельману за доведение оригинальной гипотезы относительно трехмерной сферы и Майклу Фридману и Стивену Смейла – за решение аналогичного вопроса в четырех (Фридман) и пяти и более измерениях (Смейл ). Интересно, что еще две с Филдсовской премий была присуждена за результаты о сферах: Джону Милнору за открытие 28 дифференцируемых структур на семивимирний сфере, и Жану-Пьеру Серра за разработку методов вычисления гомотопических групп сфер. Таким образом, пять из сорока восьми Филдсовской премий получили исследователи сфер!

Просмотров: 8357
Дата: 27-03-2011

Просчет объема тора

Просчет объема тора
Если у вас нет под рукой книги по геометрии, а вам надо просчитать объем тора, тогда эта стать именно для вас. По сути, тор имеет форму бублика, а с формальной стороны тор отображает поверхность
ПОДРОБНЕЕ

Абстрактная алгебра

Абстрактная алгебра
Абстрактная или высшая алгебра – область математики, сосредоточена на изучении свойств аксиоматически внедренных алгебраических структур. В современной научной литературе называется просто алгебра.
ПОДРОБНЕЕ

Алгебраическая геометрия

Алгебраическая геометрия
Алгебраическая геометрия – раздел математики, который объединяет абстрактную алгебру с геометрией. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и
ПОДРОБНЕЕ

Алгебраическая топология

Алгебраическая топология
Алгебраическая топология (устаревшее название: «комбинаторная топология») – раздел топологии, изучающий топологические пространства путем сопоставления им алгебраических объектов, а также поведение
ПОДРОБНЕЕ

Аналитическая геометрия

Аналитическая геометрия
Аналитическая геометрия, раздел геометрии, в котором свойства геометрических образов (точек, линий, поверхностей) устанавливаются средствами алгебры при помощи метода координат, то есть путем
ПОДРОБНЕЕ

Аксиоматика

Аксиоматика
Аксиоматика – система аксиом некоторой науки. Например аксиоматика элементарной геометрии содержит около 20 аксиом, аксиоматика числового поля – 9 аксиом. В математике важную роль играет аксиоматика
ПОДРОБНЕЕ
О сайте
Наш сайт создан для тех, кто хочет получать знания.
В нашем мире есть еще столько интересных вещей, мест, мыслей, светлых идей, о которых нужно обязательно узнать!
Авторизация